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We propose an ini t ial  explanat ion f or  how myalgic encephalomyel i t is /  chronic f at igue syndrome (ME/ CFS) could or iginat e and

perpet uat e by drawing on f indings f rom cr i t ical  i l l ness research.  Speci f ical l y,  we combine emerging f indings about  (a)

hypoper f usion and endot hel iopat hy,  and (b) int est inal  inj ury in t hese i l lnesses wi t h our  previously publ ished hypot hesis about  t he

role of  (c) pi t ui t ary suppression,  and (d) low t hyroid hormone f unct ion associat ed wi t h redox imbalance in ME/ CFS.  Moreover ,  we

descr ibe int er l inkages bet ween t hese pat hophysiological  mechanisms as wel l  as “ vicious cycles”  involving cyt okines and

inf lammat ion t hat  may cont r ibut e t o explain t he chronic nat ure of  t hese i l l nesses.  This paper  summar izes and expands on our

previous publ icat ions about  t he relevance of  f indings f rom cr i t ical  i l l ness f or  ME/ CFS.  New knowledge on diagnost ics,  prognost ics

and t reat ment  st rat egies could be gained t hrough act ive col laborat ion bet ween cr i t i cal  i l l ness and ME/ CFS researchers,  which

could lead t o improved out comes f or  bot h condi t ions
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t he most  common per i -onset  event s include inf ect ion-relat ed episodes (64%).  In t his submission we propose t o explain t he
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Abstract 14 

We propose an initial explanation for how myalgic encephalomyelitis / chronic fatigue syndrome 15 

(ME/CFS) could originate and perpetuate by drawing on findings from critical illness research. 16 

Specifically, we combine emerging findings about (a) hypoperfusion and endotheliopathy, and (b) 17 

intestinal injury in these illnesses with our previously published hypothesis about the role of (c) 18 

pituitary suppression, and (d) low thyroid hormone function associated with redox imbalance in 19 

ME/CFS. Moreover, we describe interlinkages between these pathophysiological mechanisms as well 20 

as “vicious cycles” involving cytokines and inflammation that may contribute to explain the chronic 21 

nature of these illnesses. This paper summarizes and expands on our previous publications about the 22 

relevance of findings from critical illness for ME/CFS. New knowledge on diagnostics, prognostics 23 

and treatment strategies could be gained through active collaboration between critical illness and 24 

ME/CFS researchers, which could lead to improved outcomes for both conditions.  25 

1 Introduction 26 

Myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) is a debilitating illness that affects 27 

millions of people worldwide (an estimated 800,000 to 2.5 million in the USA) (1, 2). Impaired 28 

function, post-exertional malaise, and unrefreshing sleep are core symptoms (1, 3, 4). At least one-29 

quarter of ME/CFS patients are house- or bedbound at some point in their lives (1); the illness can be 30 

completely incapacitating (5). The etiology of the illness is unclear (6, 7) and peri-onset events 31 

include infection-related episodes, stressful incidents, and exposure to environmental toxins (8).  32 
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Critical illness refers to the physiological response to virtually any severe injury or infection, such as 33 

head injury, burns, cardiac surgery, SARS-CoV-2 infection and heat stroke (9). Researchers make a 34 

distinction between the acute phase of critical illness – in the first hours or days following severe 35 

trauma or infection; and the chronic or prolonged phase – in the case of patients who survive the 36 

acute phase but for unknown reasons do not start recovering and continue to require intensive care 37 

(10-13). Regardless of the initial injury or infection, these “chronic Intensive Care Unit (ICU) 38 

patients” experience profound muscular weakness, cognitive impairment, pain, vulnerability to 39 

infection, etc. (9, 11, 14). The treatment of prolonged critical illness is incomplete and remains an 40 

active area of research. Moreover, cognitive and/or physical disability can last for months or even 41 

years after treatment in ICUs (i.e., post intensive care syndrome, PICS) for as of yet unexplained 42 

reasons (15-17).  43 

Drawing on findings from critical illness, we here propose an initial explanation for how ME/CFS 44 

could originate and perpetuate. Specifically, we combine emerging findings about (a) hypoperfusion 45 

and endotheliopathy, and (b) intestinal injury in these illnesses with our previously published 46 

hypothesis about the role of (c) pituitary suppression, and (d) low thyroid hormone function 47 

associated with redox imbalance in ME/CFS. Moreover, we describe interlinkages between these 48 

pathophysiological mechanisms as well as “vicious cycles” involving cytokines and inflammation 49 

that may contribute to explain the chronic nature of these illnesses. This explanation summarizes and 50 

expands on our previous publications about the relevance of findings from critical illness for 51 

ME/CFS (18-20) and builds on the work by Nacul et al. (21). The general lack of large high-quality 52 

ME/CFS studies (a reflection of the lack of funding in this field) poses a challenge for the assessment 53 

of overlaps between the two conditions. 54 

2 Pathophysiological mechanisms  55 

In the following sections we describe four central pathophysiological mechanisms in critical illness, 56 

including their relationship to inflammation. We also provide initial arguments for suggesting that 57 

similar mechanisms may underlie ME/CFS. Readers are referred to our prior publications for 58 

additional details about these mechanisms in critical illness (including heat stroke) and possible 59 

lessons for understanding ME/CFS (18-20).   60 

2.1 Hypoperfusion and endotheliopathy  61 

It has long been suggested that inadequate oxygen circulation is central to critical illness (22). 62 

Specifically, the redistribution of blood away from the splanchnic area to critical tissues is considered 63 

an adaptive androgenic response to physiological stress (23, 24). However, the resulting ischemia / 64 

reperfusion (I/R) can contribute to tissue injury driving sepsis and multi-organ dysfunction (25, 26). 65 

The relative importance of reduced blood flow, vasoconstriction (27), capillary flow disturbances 66 

(28) and impaired cellular oxygen utilization (29, 30) in driving critical illness continues to be 67 

debated.  68 

Endothelial dysfunction appears to occur in parallel with circulation disturbances during critical 69 

illness. Probable drivers of distortions in the structure and function of endothelial lining (i.e., 70 

glycocalyx) are cytokines (31), inflammation, exposure to oxidative stress (28, 32) and/or sympatho-71 

adrenal hyperactivation (33). Crucially, endothelial dysfunction during critical illness has been 72 

associated with altered cerebral blood flow (34, 35) and increased blood–brain barrier (BBB) 73 

permeability resulting in long-term cognitive impairment (36, 37). A leaky BBB could also 74 

contribute to increased intracranial pressure (38, 39). Finally, researchers have found that 75 
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endotheliopathy and coagulation disorder bolster each other via inflammatory pathways (40). 76 

Coagulation abnormalities vary in critical illness, but coagulopathy is associated with unfavorable 77 

outcomes in prolonged critical illness (i.e., length of ICU stay and mortality) (41).  78 

We propose that similar alterations of the vascular system in response to a physical, infectious and / 79 

or emotional stressor (i.e., physiological insult) may also contribute to explain the emergence of 80 

ME/CFS. This is consistent with recent hypotheses describing vasoconstriction in muscle and brain 81 

as a principal element of ME/CFS (42-46), and findings of cerebral hypoperfusion (47-49) and 82 

intracranial hypertension (50) in ME/CFS patients. It is also consistent with studies that have shown 83 

that endothelial function is impaired in ME/CFS (51, 52), both in large vessels and in the 84 

microcirculation (53, 54) – associated with redox imbalance (51). Finally, it is consistent with a new 85 

hypothesis for ME/CFS which suggests that endothelial senescence underpins ME/CFS by disrupting 86 

the intestinal barriers and BBBs (55), as well as with suggestions that leakage from dysfunctional 87 

blood vessels could explain many of the symptoms in ME/CFS (56).  88 

2.2 Intestinal injury  89 

Critical illness researchers have found profound intestinal alterations within hours following a 90 

physiological insult: a dramatic shift in the composition and virulence of intestinal microbes (57-59), 91 

an erosion of the mucus barrier, an increase in the permeability of the gut (i.e., “leaky gut”) (60-62), 92 

and a disruption in gut motility (63). This intestinal injury is thought to be largely a consequence of 93 

local I/R and redox imbalance resulting from splanchnic hypoperfusion (58, 61, 64-67). Indeed, 94 

studies in the field of exercise immunology have shown that even relatively low levels of splanchnic 95 

hypoperfusion during exercise result in intestinal injury (68). 96 

Critically, this intestinal injury may lead to bacterial translocation from the gut into circulation (i.e., 97 

endotoxemia) and/or the formation of toxic gut-derived lymph (57, 60). This in turn can induce pro-98 

inflammatory cytokines and systemic inflammation (69, 70). Moreover, changes in the intestinal 99 

microbiome or the mucus barrier may also impact the immune system directly (57). Thus, researchers 100 

have long considered the gut “the motor of critical illness” driving sepsis and distant organ 101 

dysfunction (71). Some have suggested that a self-perpetuating vicious inflammatory cycle centered 102 

around intestinal injury can hinder recovery from critical illness (61, 72).  103 

We propose that the sequence during critical illness – from splanchnic hypoperfusion to hypoxia, 104 

redox imbalance, altered gut microbiome, intestinal injury, gut-related endotoxemia, pro-105 

inflammatory cytokines and systemic inflammatory – may also contribute to explain the emergence 106 

of ME/CFS following a physiological insult. Our proposal is in alignment with others’ findings that 107 

intestinal injury and resulting inflammation are central to ME/CFS (73-81) and consistent with 108 

findings linking the gut microbiome to inflammation (82-85) and to fatigue symptoms in ME/CFS 109 

(86). If verified, the existence of a vicious inflammatory cycle centered around intestinal injury could 110 

contribute to explain the perpetuation of ME/CFS. Post-exertional malaise – a key symptom of 111 

ME/CFS – could be the manifestation of an accentuation in intestinal injury following exertion. 112 

Moreover, the translocation of gut microbes or toxin from the intestines to the brain (55) might 113 

contribute to explain central nervous system inflammation in ME/CFS (87-89). Finally, leaky gut is 114 

also associated with auto-immunity (90, 91) – an important factor in ME/CFS pathology (92-94).  115 

2.3 Pituitary suppression 116 

Almost immediately after a physiological insult, endocrine axes experience profound alterations 117 

considered a vital response to severe stress or injury to allow for a shift in energy and resources to 118 
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essential organs and repair (95-97). Whereas in critically ill patients who begin to recover, endocrine 119 

axes essentially normalize within 28 days of illness, in cases of prolonged critical illness the 120 

pituitary’s pulsatile secretion of tropic hormones (unexpectedly) remains suppressed.  121 

Why and how this central suppression is maintained in prolonged critical illness continues to be 122 

debated. Inflammatory pathways likely play a role irrespective of the nature of the original injury or 123 

infection. For example, cytokines increase the abundance and affinity of glucocorticoid receptors 124 

(GR) at the level of the hypothalamus / pituitary, thereby enhancing the negative feedback loop of the 125 

hypothalamic-pituitary-adrenal (HPA) axis, and consequently suppressing pituitary release of 126 

adrenocorticotropic hormone (ACTH) (95, 98). Similarly, cytokines up-regulate deiodinase enzymes 127 

in the hypothalamus resulting in higher local levels of the active thyroid hormone (T3), thereby 128 

enhancing the hypothalamic-pituitary-thyroid (HPT) axis’ negative feedback loop and consequently 129 

suppressing pituitary secretion of thyroid stimulating hormone (TSH) irrespective of circulating 130 

thyroid hormone concentrations (99-101). Cytokines may also suppress the release of TSH by the 131 

pituitary directly (102, 103) contributing to a virtual complete loss of pulsatile TSH secretion (96). 132 

The loss of pulsatile pituitary secretions has important implications for the autonomic nervous 133 

system, metabolism, and the immune system. Without sufficient pulsatile stimulation by ACTH, 134 

adrenal glands begin to atrophy (104, 105), compromising patients' ability to cope with external 135 

stressors and permitting excessive inflammatory responses. Erratic rather than pulsatile pituitary 136 

production of growth hormone (GH) leads to an imbalance between catabolic and anabolic 137 

hormones, resulting in loss of muscle and bone mass, muscle weakness, and changes in glucose and 138 

fat metabolism (106-108). Finally, suppression of the HPT axis is associated with tiredness and other 139 

hypothyroid-like symptoms (109, 110).  140 

We propose that the sequence during critical illness – from increased release of pituitary hormones 141 

during the acute phase to suppression of the pituitary gland’s pulsatile secretion in the prolonged 142 

phase – could also contribute to explain the emergence of ME/CFS following a physiological insult. 143 

This proposal is consistent with descriptions of ME/CFS as a progression from a hypermetabolic to 144 

hypometabolic state (21). It also aligns with a recent hypothesis relating many of the symptoms in 145 

severe ME/CFS to impaired pituitary function (111). Further support for this proposal is provided by 146 

the many previous ME/CFS studies that have documented dysfunctions in the hypothalamic–147 

pituitary–somatotropic (HPS) axis (112-114), the HPT axis (115-120) and the HPA axis (121-136) – 148 

notably associated with inflammation and oxidative & nitrosative stress (O&NS) (137-140). 149 

Strikingly, models relating the persistence of a suppressed HPA axis in ME/CFS to a change in 150 

central GRs concentrations resemble the explanations provided for pituitary suppression in critical 151 

illness (141-146). Moreover, suppression of ACTH release would explain why in a small study 152 

ME/CFS patients were found to have 50% smaller adrenals than controls (147), resembling adrenal 153 

atrophy in prolonged critical illness. However, the relationship between the pituitary’s pulsatile 154 

secretions, physiological alterations and severity of illness – which proved revelatory in 155 

understanding prolonged critical illness – remains unexplored in ME/CFS.  156 

2.4 Low thyroid hormone function 157 

Peripheral mechanisms involving cytokines lead to the rapid depression of thyroid hormone activity 158 

following a severe physiological insult (148-152). This is termed “non-thyroidal illness syndrome” 159 

(NTIS), “euthyroid sick syndrome” or “low T3 syndrome” and is thought to be an adaptive response 160 

to conserve energy resources during critical illness (152-154). The mechanisms involved include 161 

alterations in the half-life of thyroid hormone in circulation (155-157); modifications in the uptake of 162 
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thyroid hormone by cells (158, 159); down- and up-regulation of deiodinase enzymes that convert the 163 

thyroid hormone into active and inactive forms respectively (156, 160); and alterations in sensitivity 164 

of cells to thyroid hormones (161-163). These alterations can lead to important tissue-specific 165 

depression in thyroid hormone function (164, 165) which is, however, often missed altogether in 166 

clinical settings (166) because most of the alterations do not translate into changes in the blood 167 

concentrations of thyroid hormones (164, 167, 168). Indeed, the decrease in the ratio of the active 168 

form of thyroid hormone (T3) relative to the inactivated thyroid hormone (rT3) (150, 152, 169) – 169 

considered the most sensitive marker of NTIS – may be just the “tip of the iceberg” of the depressed 170 

thyroid hormone function in target tissues (120, 170).  171 

While NTIS may be beneficial in the acute phase of critical illness, it is increasingly seen as 172 

maladaptive and hampering the recovery of patients in the case of prolonged critical illness (96, 101, 173 

152, 169, 171-173). Low thyroid hormone function may hamper the function of organs (170) and the 174 

activity of immune cells, including natural killer cells (174-185). Immune dysfunctions might in turn 175 

explain other pathologies, such as viral reactivation observed in ICU patients (186-188). Some 176 

critical illness researchers have proposed a model that describes how NTIS is maintained by 177 

reciprocal relationships between inflammation (notably pro-inflammatory cytokines), O&NS and 178 

reduced thyroid hormone function, forming a “vicious cycle” (101, 173). This model can help to 179 

explain the perplexing failure to recover of some critically ill patients in ICUs that survive their 180 

initial severe illness or injury.  181 

We propose that low thyroid hormone function could also contribute to explain the emergence of 182 

ME/CFS following a physiological insult. An immune-mediated loss of thyroid hormone function in 183 

ME/CFS has long been suspected (117). A recent study showed that the thyroid panel of ME/CFS 184 

patients resembles that of critical illness patients, including significantly lower ratio of T3 to rT3 185 

hormones (120). Moreover, the other elements for a “vicious cycle” which researchers have 186 

suggested perpetuate a hypometabolic and inflammatory state in critical illness are also present in 187 

ME/CFS, including inflammation (140, 189), increased O&NS (190-192) and altered cytokine 188 

profiles (193, 194).  189 

3 Discussion 190 

Hypoperfusion and endotheliopathy, intestinal injury, pituitary suppression, and low thyroid hormone 191 

function are each central to prolonged critical illness regardless of the nature of the initial severe 192 

injury or infection (101, 173, 195, 196). We propose that, similarly, these mechanisms and their 193 

reciprocal relationships with inflammation could underlie ME/CFS regardless of the nature of the 194 

peri-onset event (i.e., infection, stressful incident, exposure to environmental toxins or other) (Table 195 

1). Moreover, the severity of ME/CFS may be a function of the strength of these mechanisms. 196 

However, each of these pathological mechanisms has largely been studied in isolation and rarely 197 

have the linkages between them been explored. Yet, the aggregate of these mechanisms is likely 198 

necessary to fully explain the perpetuation of critical illness – and to inform the understanding of 199 

ME/CFS (Figure 1). Additional areas for inquiry thus include the following:   200 

Linkages between intestinal injury and pituitary suppression: Intestinal injury during critical 201 

illness results in decreased secretion of gastrointestinal hormones including ghrelin (63, 197). 202 

Decreased stimulation of the pituitary and hypothalamus by ghrelin during prolonged critical illness 203 

in turn results in lower secretion of GH by the pituitary (198). Researchers have found that the 204 

administration of an artificial ghrelin in chronic ICU patients reactivated the pulsatile secretion of 205 
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GH by the pituitary and – when done in combination with thyrotropin-releasing hormones (TRH) – 206 

had beneficial metabolic effects (96, 108, 199). Similarly, the administration of ghrelin to the I/R rats 207 

“inhibited pro-inflammatory cytokine release, reduced neutrophil infiltration, ameliorated intestinal 208 

barrier dysfunction, attenuated organ injury, and improved survival” (200). The sequence between 209 

intestinal injury, ghrelin secretion and GH release by the pituitary could be particularly relevant for 210 

solving ME/CFS given that “several of the main typical symptoms in severe ME/CFS, such as 211 

fatigue, myalgia, contractility, delaying muscle recovery and function, exertional malaise, 212 

neurocognitive dysfunction, and physical disability may be related to severe GH deficiency” (111).  213 

Linkages between pituitary suppression and low thyroid hormone function: There are several 214 

pathways linking the activity of the pituitary with that of thyroid hormones. Firstly, GH secreted by 215 

the pituitary co-regulates the activity of the deiodinase enzyme (D3) responsible for the conversion of 216 

thyroid hormones into inactive forms (i.e., rT3 and inactivate forms of T2) (106, 201). Researchers 217 

showed that normalization of the GH secretion in prolonged critically ill patients is necessary to 218 

inhibit the increase in plasma rT3 concentrations (96, 108, 199). In other words, dampened GH 219 

release by the pituitary during prolonged critical illness enables low thyroid hormone function. 220 

Secondly, the lack of stimulation of the adrenals by ACTH could (by causing an atrophy of adrenals) 221 

create the condition necessary for persistent inflammation which depresses the activity of thyroid 222 

hormones during critical illness (148-152). In other words, dampened ACTH release by the pituitary 223 

during prolonged critical illness might permit the vicious inflammatory cycles described above. 224 

Thirdly, there is evidence that thyroid hormone conversely also stimulates ACTH secretion (202, 225 

203). In summary, the bi-directional relationships between the endocrine axes and thyroid hormone 226 

function (in addition to reciprocal relationships with inflammation) could contribute to explain the 227 

persistence of chronic ICU and ME/CFS.  228 

Linkages between low thyroid hormone function and endothelial function: Upon binding to 229 

specific receptors on endothelial cells, thyroid hormones (T3 and T4) activate the endothelial nitric 230 

oxide synthase (eNOS) responsible for nitric oxide (NO) production (204), which in turn impacts 231 

vasodilation and inflammation (205-207). A further line of inquiry may thus be the role of thyroid 232 

hormone function in endotheliopathy in ME/CFS, including as relates to the new finding that plasma 233 

from ME/CFS patients inhibits eNOS and NO production in endothelial cells (208). Relatedly, 234 

critical illness researchers have found that serum from patients with NTIS inhibits the uptake of 235 

thyroid hormone (209, 210); the mechanisms remain unresolved (165).  236 

Linkages to mitochondrial function: The impaired perfusion, redox imbalance, lower thyroid 237 

hormone function and inflammation appear to collectively affect mitochondrial activity in critical 238 

illness (via inhibition, damage, and/or decreased turnover of new mitochondrial protein) (30, 211-239 

213). Mitochondrial activity may be similarly affected in ME/CFS (190). Some have suggested that 240 

this down regulation of mitochondrial activity (and oxygen utilization) in critical illness may be an 241 

adaptive form of “hibernation” to protect cells from death pathways (30, 213). This suggestion 242 

echoes the hypothesis that ME/CFS is a form of “dauer” or “cell danger response” (214-216). Lower 243 

mitochondrial activity in turn affects the immune system and the gut endothelial “such that the host’s 244 

immune response and physical barriers to infection are simultaneously compromised” (29). 245 

Relevance of critical illness treatment trials for ME/CFS: Although prolonged critical illness 246 

remains unresolved, early treatment trials – such as the reactivation of the pituitary, or interruption of 247 

the vicious inflammatory cycles centered around either gut injury or low thyroid hormone function – 248 

may provide therapeutic avenues for ME/CFS (19). Longitudinal studies of (spontaneous) recovery 249 

from critical illness may also give clues about prerequisites for recovery from ME/CFS. Researchers 250 
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have, for example, found that “supranormal TSH precedes onset of recovery” from prolonged critical 251 

illness (96) and that metabolic rate rises > 50% above normal in the recovery phase (213). 252 

Commonality with other illnesses: Researchers have suggested commonality in the illnesses 253 

induced by physical, infectious, and / or emotional stressors (132, 217). These include heat stroke, 254 

fibromyalgia, ME/CFS, prolonged critical illness, PICS, cancer-related fatigue, post-viral fatigue, 255 

post-acute COVID-19 syndrome (PACS) and long-COVID. Specifically, it is necessary to explore 256 

whether the pathological mechanisms described above also underlie long COVID – a disease which 257 

resembles ME/CFS (218-228) and can arise even after mild COVID-19 cases.  258 

4 Conclusion 259 

Decades of research in the field of critical illness medicine have demonstrated that in response to the 260 

stress of severe infection or injury, the vascular system, intestines, endocrine axes and thyroid 261 

hormone function experience profound alterations. Self-reinforcing interlinkages between these 262 

pathophysiological mechanisms as well as “vicious cycles” involving cytokines and inflammation 263 

may perpetuate illness irrespective of the initial severe infection or injury. Without excluding 264 

possible predisposing genetic or environmental factors, we propose that the pathological mechanisms 265 

– and the interlinkages between them – that prevent recovery of some critically ill patients may also 266 

underlie ME/CFS. This initial proposal is in line with and complements several existing hypotheses 267 

of ME/CFS pathogenesis. If this hypothesis is validated, past treatment trials for critical illness may 268 

provide avenues for a cure for ME/CFS. Certainly, given the similarities described above, active 269 

collaboration between critical illness and ME/CFS researchers could lead to improved understanding 270 

of not only both conditions, but also PICS, long-COVID, PACS, and fibromyalgia.  271 

5 Tables and Figures 272 

Table 1: Central pathophysiological mechanisms in prolonged critical illness, probable drivers and 273 

implications, and initial evidence suggesting similar mechanisms in ME/CFS. 274 

Pathophysiological 

mechanisms 

In prolonged critical illness 

(Probable drivers and implications) 

In ME/CFS 

(Initial evidence) 

Hypoperfusion Drivers: 

• redistribution of blood away from the splanchnic area 

to critical tissues (23, 24) 

• reduced blood flow, vasoconstriction (27) 

• capillary flow disturbances (28)  

• additional: impaired cellular oxygen utilization (29, 30) 
Implications: 

• ischemia / reperfusion (I/R)  

• tissue injury driving sepsis and multi-organ 

dysfunction (25, 26) 

Initial evidence  

• vasoconstriction in 

muscle and brain (42-

45) 

• cerebral 

hypoperfusion (47-
49) 

• intracranial 

hypertension (50) 

 

Endotheliopathy Drivers: 

• cytokines (31), inflammation, exposure to oxidative 

stress (28, 32)  

• sympatho-adrenal hyperactivation (33) 

Implications: 

• altered cerebral blood flow (34, 35)  

• increased blood–brain barrier (BBB) permeability (36, 
37) 

• increased intracranial pressure (38, 39). 

• (variable) coagulation disorder (40) 

Initial evidence  

• impaired endothelial 

function (51, 52),  in 

large vessels and 

microcirculation (53, 

54) – associated with 

redox imbalance (51) 

• endothelial 
senescence disrupting 
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the intestinal barriers 

and BBBs (55) 

• redox imbalance  

Intestinal injury Drivers: 

• local I/R and redox imbalance resulting from 

splanchnic hypoperfusion (58, 61, 64-67) 

• disruption in gut motility (63)  

• shift in the composition and virulence of intestinal 

microbes (57-59)  
Implications: 

• erosion of the mucus barrier, increase in the 

permeability of the gut (i.e., “leaky gut”) (60-62) 

• bacterial translocation from the gut into circulation 

(i.e., endotoxemia) and/or the formation of toxic gut-

derived lymph (57, 60) 

• pro-inflammatory cytokines and systemic inflammation 

(69, 70) 

• direct impacts on the immune system (57) 

• vicious inflammatory cycle centered around intestinal 

injury (61, 72) 

• decreased secretion of gastrointestinal hormones 

including ghrelin (63, 197) impacting pituitary activity 

Initial evidence 

• intestinal injury and 

resulting 

inflammation (73-81) 

• altered gut 

microbiome linked to 
inflammation (82-85) 

• lack of beneficial gut 

bacteria linked to 

fatigue symptoms 

(86) 

• endothelial 

senescence disrupting 

the intestinal barriers 

(55) 

• auto-immunity (92-

94) 

Suppression of 

pulsatile pituitary 

function 

Drivers 

• cytokines acting on abundance and affinity of 

glucocorticoid receptors (GR) at central level (95, 98) 

• cytokines affecting deiodinase enzymes in the 

hypothalamus (99-101) 

• direct action of cytokines on TSH release by the 

pituitary directly (102, 103) 

Implications  

• loss of ACTH pulsatility: atrophy of adrenal glands 

(104, 105) compromising patients' ability to cope with 
external stressors and permitting excessive 

inflammatory responses 

• loss of GH pulsatility: imbalance between catabolic 

and anabolic hormones, resulting in loss of muscle and 

bone mass, muscle weakness, and changes in glucose 

and fat metabolism (106-108). Alterations in 

deiodinase enzyme (D3) activity enabling low thyroid 

hormone function (96, 108, 199). 

• loss of TSH pulsatility (109, 110) 

Initial evidence 

• progression from a 

hypermetabolic to 

hypometabolic state 

(21) 

• impaired pituitary 

function (hypothesis) 

(111). 

• dysfunctions in HPS 

axis (112-114), HPT 
axis (115-120) and 

HPA axis (121-136) – 

associated with 

inflammation O&NS 

(137-140) 

• changes in central 

GRs concentrations 

(models) (141-146) 

• smaller adrenals 

(147) 

Low thyroid 

hormone function 

Drivers 

• alterations in the half-life of thyroid hormone in 
circulation (155-157) 

• modifications in the uptake of thyroid hormone by cells 

(158, 159) 

• down- and up-regulation of deiodinase enzymes that 

convert the thyroid hormone into active and inactive 

forms respectively (156, 160) 

• alternations in sensitivity of cells to thyroid hormones 

(161-163) 

Implications  

• tissue-specific depression in thyroid hormone function 

(164, 165) (166) 

• hampered function of organs (170) 

Initial evidence 

• immune-mediated 
loss of thyroid 

hormone function in 

ME/CFS (suspected) 

(117). 

• significantly lower 

ratio of T3 to rT3 

hormones (120) 
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• altered activity of immune cells, including natural 

killer cells (174-185) 

• viral reactivation (186-188) 

• vicious inflammatory cycle (101, 173) 

 275 

Figure 1 Title: Central pathophysiological mechanisms in critical illness including selected 276 

consequences and inter-linkages 277 

Figure 1 Caption: Hypoperfusion and endotheliopathy, intestinal injury, pituitary suppression, and 278 

low thyroid hormone function are each central to prolonged critical illness regardless of the nature of 279 

the initial severe injury or infection. These pathophysiological mechanisms are in reciprocal 280 

relationships with inflammation; specifically, researchers have proposed vicious cycles involving 281 

intestinal injury and low thyroid hormone function. Moreover, linkages have been described between 282 

these pathophysiological mechanisms, including (i) hypo-perfusion and intestinal injury (i.e., leaky 283 

gut resulting from ischemia/reperfusion, hypoxia and redox imbalance); (ii) intestinal injury and 284 

pituitary suppression (i.e., suppressed growth hormone release resulting from reduced ghrelin 285 

secretion by the intestines); (iii) pituitary suppression and low thyroid hormone function (i.e., 286 

increased inactivated thyroid hormone resulting from the upregulation of D3 deiodinase as a 287 

consequence of lower growth hormone); and (iv) low thyroid hormone function and pituitary 288 

suppression (i.e., decreased ACTH secretion resulting from lower levels of activated thyroid 289 

hormone). We propose that these mechanisms and the linkages between them – alongside reciprocal 290 

relationships with inflammation – could also underlie ME/CFS. 291 
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